三維圖表顯示對數平均的值
對數平均是一個二個非負數字的數學函數,等於兩者的差除以其對數的差。其符號為:

其中
都是正整數。
對數平均的計算適用在有關熱傳及質傳的工程問題上。
二個數字的對數平均小於其算術平均,大於幾何平均[1],若二個數字相等,對數平均會等於算數平均及幾何平均。

根據均值定理
![{\displaystyle \exists \xi \in [x,y]:\ f'(\xi )={\frac {f(x)-f(y)}{x-y}}}](data:image/svg+xml;charset=utf-8;base64,PHN2ZyB4bWxuczp4bGluaz0iaHR0cDovL3d3dy53My5vcmcvMTk5OS94bGluayIgd2lkdGg9IjMyLjc3NGV4IiBoZWlnaHQ9IjYuMTc2ZXgiIHN0eWxlPSJ2ZXJ0aWNhbC1hbGlnbjogLTIuMzM4ZXg7IiB2aWV3Qm94PSIwIC0xNjUyLjUgMTQxMTEuMSAyNjU5LjEiIHJvbGU9ImltZyIgZm9jdXNhYmxlPSJmYWxzZSIgeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzIwMDAvc3ZnIiBhcmlhLWxhYmVsbGVkYnk9Ik1hdGhKYXgtU1ZHLTEtVGl0bGUiPgo8dGl0bGUgaWQ9Ik1hdGhKYXgtU1ZHLTEtVGl0bGUiPntcZGlzcGxheXN0eWxlIFxleGlzdHMgXHhpIFxpbiBbeCx5XTpcIGYnKFx4aSApPXtcZnJhYyB7Zih4KS1mKHkpfXt4LXl9fX08L3RpdGxlPgo8ZGVmcyBhcmlhLWhpZGRlbj0idHJ1ZSI+CjxwYXRoIHN0cm9rZS13aWR0aD0iMSIgaWQ9IkUxLU1KTUFJTi0yMjAzIiBkPSJNNTYgNjYxVDU2IDY3NFQ3MCA2OTRINDg3UTQ5NyA2ODYgNTAwIDY3OVYxNVE0OTcgMTAgNDg3IDFMMjc5IDBINzBRNTYgNyA1NiAyMFQ3MCA0MEg0NjBWMzI3SDg0UTcwIDMzNCA3MCAzNDdUODQgMzY3SDQ2MFY2NTRINzBRNTYgNjYxIDU2IDY3NFoiPjwvcGF0aD4KPHBhdGggc3Ryb2tlLXdpZHRoPSIxIiBpZD0iRTEtTUpNQVRISS0zQkUiIGQ9Ik0yNjggNjMyUTI2OCA3MDQgMjk2IDcwNFEzMTQgNzA0IDMxNCA2ODdRMzE0IDY4MiAzMTEgNjY0VDMwOCA2MzVUMzA5IDYyMFY2MTZIMzE1UTM0MiA2MTkgMzYwIDYxOVE0NDMgNjE5IDQ0MyA1ODZRNDM5IDU0OCAzNTggNTQ2SDM0NFEzMjYgNTQ2IDMxNyA1NDlUMjkwIDU2NlEyNTcgNTUwIDIyNiA1MDVUMTk1IDQwNVExOTUgMzgxIDIwMSAzNjRUMjExIDM0MlQyMTggMzM3UTI2NiAzNDcgMjk4IDM0N1EzNzUgMzQ3IDM3NSAzMTRRMzc0IDI5NyAzNTkgMjg4VDMyNyAyNzdUMjgwIDI3NVEyMzQgMjc1IDIwOCAyODNMMTk1IDI4NlExNDkgMjYwIDExOSAyMTRUODggMTMwUTg4IDExNiA5MCAxMDhRMTAxIDc5IDEyOSA2M1QyMjkgMjBRMjM4IDE3IDI0MyAxNVEzMzcgLTIxIDM1NCAtMzNRMzgzIC01MyAzODMgLTk0UTM4MyAtMTM3IDM1MSAtMTcxVDI3MyAtMjA1UTI0MCAtMjA1IDIwMiAtMTkwVDE1OCAtMTY3UTE1NiAtMTYzIDE1NiAtMTU5UTE1NiAtMTUxIDE2MSAtMTQ2VDE3NiAtMTQwUTE4MiAtMTQwIDE4OSAtMTQzUTIzMiAtMTY4IDI3NCAtMTY4UTI4NiAtMTY4IDI5MiAtMTY1UTMxMyAtMTUxIDMxMyAtMTI5UTMxMyAtMTEyIDMwMSAtMTA0VDIzMiAtNzVRMjE0IC02OCAyMDQgLTY0UTE5OCAtNjIgMTcxIC01MlQxMzYgLTM4VDEwNyAtMjRUNzggLThUNTYgMTJUMzYgMzdUMjYgNjZUMjEgMTAzUTIxIDE0OSA1NSAyMDZUMTQ1IDMwMUwxNTQgMzA3TDE0OCAzMTNRMTQxIDMxOSAxMzYgMzIzVDEyNCAzMzhUMTExIDM1OFQxMDMgMzgyVDk5IDQxM1E5OSA0NzEgMTQzIDUyNFQyNTkgNjAyTDI3MSA2MDdRMjY4IDYxOCAyNjggNjMyWiI+PC9wYXRoPgo8cGF0aCBzdHJva2Utd2lkdGg9IjEiIGlkPSJFMS1NSk1BSU4tMjIwOCIgZD0iTTg0IDI1MFE4NCAzNzIgMTY2IDQ1MFQzNjAgNTM5UTM2MSA1MzkgMzc3IDUzOVQ0MTkgNTQwVDQ2OSA1NDBINTY4UTU4MyA1MzIgNTgzIDUyMFE1ODMgNTExIDU3MCA1MDFMNDY2IDUwMFEzNTUgNDk5IDMyOSA0OTRRMjgwIDQ4MiAyNDIgNDU4VDE4MyA0MDlUMTQ3IDM1NFQxMjkgMzA2VDEyNCAyNzJWMjcwSDU2OFE1ODMgMjYyIDU4MyAyNTBUNTY4IDIzMEgxMjRWMjI4UTEyNCAyMDcgMTM0IDE3N1QxNjcgMTEyVDIzMSA0OFQzMjggN1EzNTUgMSA0NjYgMEg1NzBRNTgzIC0xMCA1ODMgLTIwUTU4MyAtMzIgNTY4IC00MEg0NzFRNDY0IC00MCA0NDYgLTQwVDQxNyAtNDFRMjYyIC00MSAxNzIgNDVRODQgMTI3IDg0IDI1MFoiPjwvcGF0aD4KPHBhdGggc3Ryb2tlLXdpZHRoPSIxIiBpZD0iRTEtTUpNQUlOLTVCIiBkPSJNMTE4IC0yNTBWNzUwSDI1NVY3MTBIMTU4Vi0yMTBIMjU1Vi0yNTBIMTE4WiI+PC9wYXRoPgo8cGF0aCBzdHJva2Utd2lkdGg9IjEiIGlkPSJFMS1NSk1BVEhJLTc4IiBkPSJNNTIgMjg5UTU5IDMzMSAxMDYgMzg2VDIyMiA0NDJRMjU3IDQ0MiAyODYgNDI0VDMyOSAzNzlRMzcxIDQ0MiA0MzAgNDQyUTQ2NyA0NDIgNDk0IDQyMFQ1MjIgMzYxUTUyMiAzMzIgNTA4IDMxNFQ0ODEgMjkyVDQ1OCAyODhRNDM5IDI4OCA0MjcgMjk5VDQxNSAzMjhRNDE1IDM3NCA0NjUgMzkxUTQ1NCA0MDQgNDI1IDQwNFE0MTIgNDA0IDQwNiA0MDJRMzY4IDM4NiAzNTAgMzM2UTI5MCAxMTUgMjkwIDc4UTI5MCA1MCAzMDYgMzhUMzQxIDI2UTM3OCAyNiA0MTQgNTlUNDYzIDE0MFE0NjYgMTUwIDQ2OSAxNTFUNDg1IDE1M0g0ODlRNTA0IDE1MyA1MDQgMTQ1UTUwNCAxNDQgNTAyIDEzNFE0ODYgNzcgNDQwIDMzVDMzMyAtMTFRMjYzIC0xMSAyMjcgNTJRMTg2IC0xMCAxMzMgLTEwSDEyN1E3OCAtMTAgNTcgMTZUMzUgNzFRMzUgMTAzIDU0IDEyM1Q5OSAxNDNRMTQyIDE0MyAxNDIgMTAxUTE0MiA4MSAxMzAgNjZUMTA3IDQ2VDk0IDQxTDkxIDQwUTkxIDM5IDk3IDM2VDExMyAyOVQxMzIgMjZRMTY4IDI2IDE5NCA3MVEyMDMgODcgMjE3IDEzOVQyNDUgMjQ3VDI2MSAzMTNRMjY2IDM0MCAyNjYgMzUyUTI2NiAzODAgMjUxIDM5MlQyMTcgNDA0UTE3NyA0MDQgMTQyIDM3MlQ5MyAyOTBROTEgMjgxIDg4IDI4MFQ3MiAyNzhINThRNTIgMjg0IDUyIDI4OVoiPjwvcGF0aD4KPHBhdGggc3Ryb2tlLXdpZHRoPSIxIiBpZD0iRTEtTUpNQUlOLTJDIiBkPSJNNzggMzVUNzggNjBUOTQgMTAzVDEzNyAxMjFRMTY1IDEyMSAxODcgOTZUMjEwIDhRMjEwIC0yNyAyMDEgLTYwVDE4MCAtMTE3VDE1NCAtMTU4VDEzMCAtMTg1VDExNyAtMTk0UTExMyAtMTk0IDEwNCAtMTg1VDk1IC0xNzJROTUgLTE2OCAxMDYgLTE1NlQxMzEgLTEyNlQxNTcgLTc2VDE3MyAtM1Y5TDE3MiA4UTE3MCA3IDE2NyA2VDE2MSAzVDE1MiAxVDE0MCAwUTExMyAwIDk2IDE3WiI+PC9wYXRoPgo8cGF0aCBzdHJva2Utd2lkdGg9IjEiIGlkPSJFMS1NSk1BVEhJLTc5IiBkPSJNMjEgMjg3UTIxIDMwMSAzNiAzMzVUODQgNDA2VDE1OCA0NDJRMTk5IDQ0MiAyMjQgNDE5VDI1MCAzNTVRMjQ4IDMzNiAyNDcgMzM0UTI0NyAzMzEgMjMxIDI4OFQxOTggMTkxVDE4MiAxMDVRMTgyIDYyIDE5NiA0NVQyMzggMjdRMjYxIDI3IDI4MSAzOFQzMTIgNjFUMzM5IDk0UTMzOSA5NSAzNDQgMTE0VDM1OCAxNzNUMzc3IDI0N1E0MTUgMzk3IDQxOSA0MDRRNDMyIDQzMSA0NjIgNDMxUTQ3NSA0MzEgNDgzIDQyNFQ0OTQgNDEyVDQ5NiA0MDNRNDk2IDM5MCA0NDcgMTkzVDM5MSAtMjNRMzYzIC0xMDYgMjk0IC0xNTVUMTU2IC0yMDVRMTExIC0yMDUgNzcgLTE4M1Q0MyAtMTE3UTQzIC05NSA1MCAtODBUNjkgLTU4VDg5IC00OFQxMDYgLTQ1UTE1MCAtNDUgMTUwIC04N1ExNTAgLTEwNyAxMzggLTEyMlQxMTUgLTE0MlQxMDIgLTE0N0w5OSAtMTQ4UTEwMSAtMTUzIDExOCAtMTYwVDE1MiAtMTY3SDE2MFExNzcgLTE2NyAxODYgLTE2NVEyMTkgLTE1NiAyNDcgLTEyN1QyOTAgLTY1VDMxMyAtOVQzMjEgMjFMMzE1IDE3UTMwOSAxMyAyOTYgNlQyNzAgLTZRMjUwIC0xMSAyMzEgLTExUTE4NSAtMTEgMTUwIDExVDEwNCA4MlExMDMgODkgMTAzIDExM1ExMDMgMTcwIDEzOCAyNjJUMTczIDM3OVExNzMgMzgwIDE3MyAzODFRMTczIDM5MCAxNzMgMzkzVDE2OSA0MDBUMTU4IDQwNEgxNTRRMTMxIDQwNCAxMTIgMzg1VDgyIDM0NFQ2NSAzMDJUNTcgMjgwUTU1IDI3OCA0MSAyNzhIMjdRMjEgMjg0IDIxIDI4N1oiPjwvcGF0aD4KPHBhdGggc3Ryb2tlLXdpZHRoPSIxIiBpZD0iRTEtTUpNQUlOLTVEIiBkPSJNMjIgNzEwVjc1MEgxNTlWLTI1MEgyMlYtMjEwSDExOVY3MTBIMjJaIj48L3BhdGg+CjxwYXRoIHN0cm9rZS13aWR0aD0iMSIgaWQ9IkUxLU1KTUFJTi0zQSIgZD0iTTc4IDM3MFE3OCAzOTQgOTUgNDEyVDEzOCA0MzBRMTYyIDQzMCAxODAgNDE0VDE5OSAzNzFRMTk5IDM0NiAxODIgMzI4VDEzOSAzMTBUOTYgMzI3VDc4IDM3MFpNNzggNjBRNzggODQgOTUgMTAyVDEzOCAxMjBRMTYyIDEyMCAxODAgMTA0VDE5OSA2MVExOTkgMzYgMTgyIDE4VDEzOSAwVDk2IDE3VDc4IDYwWiI+PC9wYXRoPgo8cGF0aCBzdHJva2Utd2lkdGg9IjEiIGlkPSJFMS1NSk1BVEhJLTY2IiBkPSJNMTE4IC0xNjJRMTIwIC0xNjIgMTI0IC0xNjRUMTM1IC0xNjdUMTQ3IC0xNjhRMTYwIC0xNjggMTcxIC0xNTVUMTg3IC0xMjZRMTk3IC05OSAyMjEgMjdUMjY3IDI2N1QyODkgMzgyVjM4NUgyNDJRMTk1IDM4NSAxOTIgMzg3UTE4OCAzOTAgMTg4IDM5N0wxOTUgNDI1UTE5NyA0MzAgMjAzIDQzMFQyNTAgNDMxUTI5OCA0MzEgMjk4IDQzMlEyOTggNDM0IDMwNyA0ODJUMzE5IDU0MFEzNTYgNzA1IDQ2NSA3MDVRNTAyIDcwMyA1MjYgNjgzVDU1MCA2MzBRNTUwIDU5NCA1MjkgNTc4VDQ4NyA1NjFRNDQzIDU2MSA0NDMgNjAzUTQ0MyA2MjIgNDU0IDYzNlQ0NzggNjU3TDQ4NyA2NjJRNDcxIDY2OCA0NTcgNjY4UTQ0NSA2NjggNDM0IDY1OFQ0MTkgNjMwUTQxMiA2MDEgNDAzIDU1MlQzODcgNDY5VDM4MCA0MzNRMzgwIDQzMSA0MzUgNDMxUTQ4MCA0MzEgNDg3IDQzMFQ0OTggNDI0UTQ5OSA0MjAgNDk2IDQwN1Q0OTEgMzkxUTQ4OSAzODYgNDgyIDM4NlQ0MjggMzg1SDM3MkwzNDkgMjYzUTMwMSAxNSAyODIgLTQ3UTI1NSAtMTMyIDIxMiAtMTczUTE3NSAtMjA1IDEzOSAtMjA1UTEwNyAtMjA1IDgxIC0xODZUNTUgLTEzMlE1NSAtOTUgNzYgLTc4VDExOCAtNjFRMTYyIC02MSAxNjIgLTEwM1ExNjIgLTEyMiAxNTEgLTEzNlQxMjcgLTE1N0wxMTggLTE2MloiPjwvcGF0aD4KPHBhdGggc3Ryb2tlLXdpZHRoPSIxIiBpZD0iRTEtTUpNQUlOLTIwMzIiIGQ9Ik03OSA0M1E3MyA0MyA1MiA0OVQzMCA2MVEzMCA2OCA4NSAyOTNUMTQ2IDUyOFExNjEgNTYwIDE5OCA1NjBRMjE4IDU2MCAyNDAgNTQ1VDI2MiA1MDFRMjYyIDQ5NiAyNjAgNDg2UTI1OSA0NzkgMTczIDI2M1Q4NCA0NVQ3OSA0M1oiPjwvcGF0aD4KPHBhdGggc3Ryb2tlLXdpZHRoPSIxIiBpZD0iRTEtTUpNQUlOLTI4IiBkPSJNOTQgMjUwUTk0IDMxOSAxMDQgMzgxVDEyNyA0ODhUMTY0IDU3NlQyMDIgNjQzVDI0NCA2OTVUMjc3IDcyOVQzMDIgNzUwSDMxNUgzMTlRMzMzIDc1MCAzMzMgNzQxUTMzMyA3MzggMzE2IDcyMFQyNzUgNjY3VDIyNiA1ODFUMTg0IDQ0M1QxNjcgMjUwVDE4NCA1OFQyMjUgLTgxVDI3NCAtMTY3VDMxNiAtMjIwVDMzMyAtMjQxUTMzMyAtMjUwIDMxOCAtMjUwSDMxNUgzMDJMMjc0IC0yMjZRMTgwIC0xNDEgMTM3IC0xNFQ5NCAyNTBaIj48L3BhdGg+CjxwYXRoIHN0cm9rZS13aWR0aD0iMSIgaWQ9IkUxLU1KTUFJTi0yOSIgZD0iTTYwIDc0OUw2NCA3NTBRNjkgNzUwIDc0IDc1MEg4NkwxMTQgNzI2UTIwOCA2NDEgMjUxIDUxNFQyOTQgMjUwUTI5NCAxODIgMjg0IDExOVQyNjEgMTJUMjI0IC03NlQxODYgLTE0M1QxNDUgLTE5NFQxMTMgLTIyN1Q5MCAtMjQ2UTg3IC0yNDkgODYgLTI1MEg3NFE2NiAtMjUwIDYzIC0yNTBUNTggLTI0N1Q1NSAtMjM4UTU2IC0yMzcgNjYgLTIyNVEyMjEgLTY0IDIyMSAyNTBUNjYgNzI1UTU2IDczNyA1NSA3MzhRNTUgNzQ2IDYwIDc0OVoiPjwvcGF0aD4KPHBhdGggc3Ryb2tlLXdpZHRoPSIxIiBpZD0iRTEtTUpNQUlOLTNEIiBkPSJNNTYgMzQ3UTU2IDM2MCA3MCAzNjdINzA3UTcyMiAzNTkgNzIyIDM0N1E3MjIgMzM2IDcwOCAzMjhMMzkwIDMyN0g3MlE1NiAzMzIgNTYgMzQ3Wk01NiAxNTNRNTYgMTY4IDcyIDE3M0g3MDhRNzIyIDE2MyA3MjIgMTUzUTcyMiAxNDAgNzA3IDEzM0g3MFE1NiAxNDAgNTYgMTUzWiI+PC9wYXRoPgo8cGF0aCBzdHJva2Utd2lkdGg9IjEiIGlkPSJFMS1NSk1BSU4tMjIxMiIgZD0iTTg0IDIzN1Q4NCAyNTBUOTggMjcwSDY3OVE2OTQgMjYyIDY5NCAyNTBUNjc5IDIzMEg5OFE4NCAyMzcgODQgMjUwWiI+PC9wYXRoPgo8L2RlZnM+CjxnIHN0cm9rZT0iY3VycmVudENvbG9yIiBmaWxsPSJjdXJyZW50Q29sb3IiIHN0cm9rZS13aWR0aD0iMCIgdHJhbnNmb3JtPSJtYXRyaXgoMSAwIDAgLTEgMCAwKSIgYXJpYS1oaWRkZW49InRydWUiPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQUlOLTIyMDMiIHg9IjAiIHk9IjAiPjwvdXNlPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQVRISS0zQkUiIHg9IjU1NiIgeT0iMCI+PC91c2U+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tMjIwOCIgeD0iMTI3NyIgeT0iMCI+PC91c2U+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tNUIiIHg9IjIyMjMiIHk9IjAiPjwvdXNlPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQVRISS03OCIgeD0iMjUwMSIgeT0iMCI+PC91c2U+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tMkMiIHg9IjMwNzQiIHk9IjAiPjwvdXNlPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQVRISS03OSIgeD0iMzUxOSIgeT0iMCI+PC91c2U+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tNUQiIHg9IjQwMTYiIHk9IjAiPjwvdXNlPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQUlOLTNBIiB4PSI0NTczIiB5PSIwIj48L3VzZT4KPGcgdHJhbnNmb3JtPSJ0cmFuc2xhdGUoNTM3OSwwKSI+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BVEhJLTY2IiB4PSIwIiB5PSIwIj48L3VzZT4KIDx1c2UgdHJhbnNmb3JtPSJzY2FsZSgwLjcwNykiIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tMjAzMiIgeD0iODA0IiB5PSI1ODMiPjwvdXNlPgo8L2c+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tMjgiIHg9IjYyNDIiIHk9IjAiPjwvdXNlPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQVRISS0zQkUiIHg9IjY2MzIiIHk9IjAiPjwvdXNlPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQUlOLTI5IiB4PSI3MDc1IiB5PSIwIj48L3VzZT4KIDx1c2UgeGxpbms6aHJlZj0iI0UxLU1KTUFJTi0zRCIgeD0iNzc0MiIgeT0iMCI+PC91c2U+CjxnIHRyYW5zZm9ybT0idHJhbnNsYXRlKDg3OTksMCkiPgo8ZyB0cmFuc2Zvcm09InRyYW5zbGF0ZSgxMjAsMCkiPgo8cmVjdCBzdHJva2U9Im5vbmUiIHdpZHRoPSI1MDcxIiBoZWlnaHQ9IjYwIiB4PSIwIiB5PSIyMjAiPjwvcmVjdD4KPGcgdHJhbnNmb3JtPSJ0cmFuc2xhdGUoNjAsNzcwKSI+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BVEhJLTY2IiB4PSIwIiB5PSIwIj48L3VzZT4KIDx1c2UgeGxpbms6aHJlZj0iI0UxLU1KTUFJTi0yOCIgeD0iNTUwIiB5PSIwIj48L3VzZT4KIDx1c2UgeGxpbms6aHJlZj0iI0UxLU1KTUFUSEktNzgiIHg9Ijk0MCIgeT0iMCI+PC91c2U+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tMjkiIHg9IjE1MTIiIHk9IjAiPjwvdXNlPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQUlOLTIyMTIiIHg9IjIxMjQiIHk9IjAiPjwvdXNlPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQVRISS02NiIgeD0iMzEyNCIgeT0iMCI+PC91c2U+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tMjgiIHg9IjM2NzUiIHk9IjAiPjwvdXNlPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQVRISS03OSIgeD0iNDA2NCIgeT0iMCI+PC91c2U+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tMjkiIHg9IjQ1NjIiIHk9IjAiPjwvdXNlPgo8L2c+CjxnIHRyYW5zZm9ybT0idHJhbnNsYXRlKDEzODksLTY4NikiPgogPHVzZSB4bGluazpocmVmPSIjRTEtTUpNQVRISS03OCIgeD0iMCIgeT0iMCI+PC91c2U+CiA8dXNlIHhsaW5rOmhyZWY9IiNFMS1NSk1BSU4tMjIxMiIgeD0iNzk0IiB5PSIwIj48L3VzZT4KIDx1c2UgeGxpbms6aHJlZj0iI0UxLU1KTUFUSEktNzkiIHg9IjE3OTUiIHk9IjAiPjwvdXNlPgo8L2c+CjwvZz4KPC9nPgo8L2c+Cjwvc3ZnPg==)
若將
改為
,對數平均可以由
來求得

求解
。

對數平均也可以表示為指數函數以下的面積。

面積的表示法可以推導一個有關對數平均的基本性質。
因為指數函數為單調函數,長度為1區間的的積分會在
和
之間。積分算子的齐次性轉移到平均算子,因此
.
對數平均可推廣到
變數,考慮對數n階導數的均差中值定理。
可以得到:
其中
為對數的均差。
若
,會變成
.
積分的表示法也可以推廣到多變數,但結果不同。
假設单纯形
其中
及適當的量度
可以使单纯形得到1的體積,可得

利用指數函數的均差可以簡化如下
.
例如
.
(算術平均)