Skip to main content
Log in

Metabolism of 1-naphthaleneacetic acid in explants of tobacco: Evidence for release of free hormone from conjugates

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

1-Naphthaleneacetic acid (1-NAA), required for in vitro flower bud formation, was taken up by pedicel explants of tobacco (Nicotiana tabacum L.) in large amounts and rapidly metabolized into various conjugates. These conjugates have been tentatively identified in four thin-layer Chromatographic systems using authentic standards as references. The major metabolite formed during the first hours of culture comigrated with 1-NAA-glucoside (1-NAGlu). From the 6th hour on, most 1-NAA had been converted into a yet unidentified metabolite. 1-NAglu was an intermediate in the formation of this metabolite. After 24 h, 1-NAA-aspartate (1-NAAsp) became the second major metabolite. The increase in 1-NAAsp formation was induced by 1-NAA. The inactive analog 2-naphthaleneacetic acid (2-NAA) was metabolized similar to 1-NAA, but was unable to increase the formation of the aspartate conjugate. When explants were fed labeled 1-NAGlu, 1-NAAsp or the major unidentified metabolite, radioactivity became associated with free 1-NAA and all major conjugates, indicating interconversion of conjugates and breakdown to free 1-NAA. A regulatory role of conjugation in maintaining a particular level of free 1-NAA in the tissue is proposed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharoni M, Cohen JD (1968) Identification of IAA conjugates from IAA-treated tobacco leaves and their role in the induction of ethylene. Plant Physiol 80S:34

    Google Scholar 

  • Andreae WA (1967) Uptake and metabolism of indoleacetic acid, naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid by pea root segments in relation to growth inhibition during and after auxin application. Can J Bot 45:737–753

    Article  CAS  Google Scholar 

  • Aranda G, Tabet J-C, Leguay J-J, Caboche M (1984) Identification of 1-NAA-l-aspartate amide as the major metabolite synthesised by tobacco mesophyll protoplasts incubated in the presence of the auxin analogue 1-NAA. Phytochemistry 23:1221–1223

    Article  CAS  Google Scholar 

  • Bandurski RS (1980) Homeostatic control of concentrations of indole-3-acetic acid. In: Skoog F (ed) Plant growth substances 1979. Springer, Berlin, pp 37–49

    Google Scholar 

  • Bandurski RS (1984) Metabolism of indole-3-acetic acid. In: Crozier A, Hillman JR (eds) The biosynthesis and metabolism of plant hormones. Society for Experimental Biology Seminar Series 23. Cambridge University Press, Cambridge, pp 183–200

    Google Scholar 

  • Bandurski RS, Schulze A, Domagalski W, Komoszynski M, Lewer P, Nonhebel H (1987) In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated plant hormones-structure, metabolism and function. Berlin, Deutscher Verlag der Wissenschaften, pp 11–20

    Google Scholar 

  • Brenner ML, Tonkinson TRC (1974) Extraction and identification ofl-N-[(1-naphthyl) acetyl] glutamic acid, a major product of naphthaleneacetic acid metabolism. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. Bulletin 12. The Royal Society of New Zealand, Wellington, pp 759–764

    Google Scholar 

  • Caboche M, Aranda G, Poll AM, Huet J-C, Leguay J-J (1984) Auxin conjugation by tobacco mesophyll protoplasts. Correlations between auxin cytotoxicity under low density growth conditions and induction of conjugation processes at high density. Plant Physiol 75:54–59

    PubMed  CAS  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Davidonis GH, Hamilton RH, Mumma RO (1980) Metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) in soybean root callus. Evidence for the conversion of 2,4-D amino acid conjugates to free 2,4-D. Plant Physiol 66:537–540

    PubMed  CAS  Google Scholar 

  • Dunlap JR, Kresovich S, McGee RE (1986) The effect of salt concentration on auxin stability in culture media. Plant Physiol 81:934–936

    PubMed  CAS  Google Scholar 

  • Goren R, Bucovac MJ (1973) Mechanism of naphthaleneacetic acid conjugation. No effect of ethylene. Plant Physiol 51:907–913

    PubMed  CAS  Google Scholar 

  • Grambow HJ (1988) Aspects of IAA-metabolism. In: Kutacek M, Bandurski RS, Krekule J (eds) Physiology and biochemistry of auxins in plants. Academia, Prague, pp 77–84

    Google Scholar 

  • Greenwood MS, Harlow AC, Hodgson HD (1974) The role of auxin metabolism in root meristem regeneration byPinus lambertiana embryo cuttings. Physiol Plant 32:198–202

    Article  CAS  Google Scholar 

  • Hangarter RP, Good NE (1981) Evidence that IAA conjugates are slow-release sources of free IAA in plant tissues. Plant Physiol 68:1424–1427

    PubMed  CAS  Google Scholar 

  • Kazemie M, Klämbt D (1969) Untersuchungen zur Aufnahme von Naphthalin-1-essigsäure und ihres Asparaginsäure-Konjugates in Weizenkoleoptilgewebe. Planta 89:76–81

    Article  CAS  Google Scholar 

  • Kopcewicz J, Ehmann A, Bandurski RS (1974) Enzymatic esterification of indole-3-acetic acid to myo-inositol and glucose. Plant Physiol 54:846–851

    PubMed  CAS  Google Scholar 

  • Leznicki AJ, Bandurski RS (1988) Enzymatic synthesis of indole-3-acetyl-1-O-β-d-glucose. II. Metabolic characteristics of the enzyme. Plant Physiol 88:1481–1485

    PubMed  CAS  Google Scholar 

  • Magnus V (1987) Auxin conjugation. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated plant hormones-structure, metabolism and function. Deutscher Verlag der Wissenschaften, Berlin, pp 31–40

    Google Scholar 

  • Michalczuk L, Bandurski RS (1982) Enzymatic synthesis of indol-3-yl-acetyl-1-O-α-d-glucose and indol-3-yl-acetylmyo-inositol. Biochem J 207:273–281

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Riov J, Cooper R, Gottlieb HE (1979) Metabolism of auxin in pine tissues: naphthaleneacetic acid conjugation. Physiol Plant 46:133–138

    Article  CAS  Google Scholar 

  • Sembdner G, Gross D, Liebisch H-W, Schneider G (1980) Biosynthesis and metabolism of plant hormones. In: Mac-Millan J (ed) Encyclopedia of plant physiology new series, vol. 9. Springer, Berlin, pp 281–444

    Google Scholar 

  • Shindy WW, Jordan LS, Jolliffe VA, Coggins CW, Kumamoto J (1973) Metabolism of [14C]naphthaleneacetic acid in Kinnow mandarin. J Agr Food Chem 21:629–631

    Article  CAS  Google Scholar 

  • Smulders MJM, Croes AF, Robben AJPM (1987) Auxin transport and metabolism during in vitro flower bud development in tobacco. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated plant hormones—structure, metabolism and function. Berlin, Deutscher Verlag der Wissenschaften, pp 87–91

    Google Scholar 

  • Smulders MJM, Croes AF, Wullems GJ (1988a) Polar transport of 1-naphthaleneacetic acid determines the distribution of flower buds on explants of tobacco. Plant Physiol 88:752–756

    PubMed  CAS  Google Scholar 

  • Smulders MJM, Janssen GFE, Croes AF, Barendse GWM, Wullems GJ (1988b) Auxin regulation of flower bud formation in tobacco explants J Exp Bot 39:451–459

    Article  CAS  Google Scholar 

  • Südi J (1964) Induction of the formation of complexes between aspartic acid and indolyl-3-acetic acid or naphthalene acetic acid by other carboxylic acids. Nature 201:1009–1010

    Article  Google Scholar 

  • Südi J (1966) Increases in the capacity of pea tissue to form acyl-aspartic acids specifically induced by auxins. New Phytol 65:9–21

    Article  Google Scholar 

  • Tran Thanh Van M (1973) Direct flower bud neoformation from superficial tissue of small explants ofNicotiana tabacum L. Planta 115:87–92

    Article  Google Scholar 

  • Van den Ende G, Croes AF, Kemp A, Barendse GWM (1984) Development of flower buds in thin-layer cultures of floral stalk tissue from tobacco: role of hormones in different stages. Physiol Plant 61:114–118

    Article  Google Scholar 

  • Veen H (1966) Transport, immobilization and localization of naphthylacetic acid-1-[14C] in Coleus explants. Acta Bot Neerl 15:419–433

    CAS  Google Scholar 

  • Venis MA (1972) Auxin-induced conjugation systems in peas. Plant Physiol 49:24–27

    PubMed  CAS  Google Scholar 

  • Vijayaraghavan SJ, Pengelly WL (1986) Bound auxin metabolism in cultured crown-gall tissues of tobacco. Plant Physiol 80:315–321

    Article  PubMed  CAS  Google Scholar 

  • Zenk MH (1962) Aufnahme und Stoffwechsel von α-Naphthylessigsäure durch Erbsenepicotyle. Planta 58:75–94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smulders, M.J.M., van de Ven, E.T.W.M., Croes, A.F. et al. Metabolism of 1-naphthaleneacetic acid in explants of tobacco: Evidence for release of free hormone from conjugates. J Plant Growth Regul 9, 27–34 (1990). https://doi.org/10.1007/BF02041938

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF02041938

Keywords