Exothermic reaction
In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change ΔH⚬ is negative."[1][2] Exothermic reactions usually release heat. The term is often confused with exergonic reaction, which IUPAC defines as "... a reaction for which the overall standard Gibbs energy change ΔG⚬ is negative."[2] A strongly exothermic reaction will usually also be exergonic because ΔH⚬ makes a major contribution to ΔG⚬. Most of the spectacular chemical reactions that are demonstrated in classrooms are exothermic and exergonic. The opposite is an endothermic reaction, which usually takes up heat and is driven by an entropy increase in the system.
Examples
Examples are numerous: combustion, the thermite reaction, combining strong acids and bases, polymerizations. As an example in everyday life, hand warmers make use of the oxidation of iron to achieve an exothermic reaction:
- 4Fe + 3O2 → 2Fe2O3 ΔH⚬ = - 1648 kJ/mol
A particularly important class of exothermic reactions is combustion of a hydrocarbon fuel, e.g. the burning of natural gas:
- CH4 + 2O2 → CO2 + 2H2O ΔH⚬ = - 890 kJ/mol