Skip to main content
Log in

Quantum Stream Ciphers: Impossibility of Unconditionally Strong Algorithms

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Stream ciphers form one of two large classes of ciphers with private keys in classical cryptography. In this paper, we introduce the concept of a quantum stream cipher. Special types of quantum stream ciphers were proposed earlier by numerous researchers. We prove a general result on the nonexistence of an unconditionally strong quantum stream cipher if the length of a message is much longer than the length of a key. We analyze individual and collective attacks against a quantum stream cipher. A relationship between the problem of guessing the key by the opponent and the problem of distinguishing of random quantum states is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Alferov, A. Yu. Zubov, A. S. Kuzmin, and A. V. Cheremushkin, Foundations of Cryptography [in Russian], Gelios, Moscow (2002).

    Google Scholar 

  2. K. A. Balygin et al., “Practical quantum cryptography,” Pis’ma Zh. Eksper. Teoret. Fiz., 105, No.9, 570–576 (2017).

    Google Scholar 

  3. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in: Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, Bangalore, India (1984), pp. 175–179.

    Google Scholar 

  4. T.-Y. Chen et al., “Metropolitan all-pass and inter-city quantum communication network,” Optics Express, 18, No. 26, 27217–25 (2009).

    Article  Google Scholar 

  5. C. Elliott et al., “Current status of the DARPA quantum network,” Proc. SPIE, 5815, 138–149 (2005).

    Article  Google Scholar 

  6. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys., 74, No. 1, 145–195 (2002).

    Article  Google Scholar 

  7. O. Hirota and K. Kurosawa, “Immunity against correlation attack on quantum stream cipher by Yuen 2000 protocol,” Quant. Inform. Process., 6, No. 2, 81–91 (2007).

    Article  Google Scholar 

  8. A. S. Holevo, Quantum Systems, Channels, Information [in Russian], Moscow (2010).

    Google Scholar 

  9. K. Kato, “Quantum enigma cipher as a generalization of the quantum stream cipher,” Proc. SPIE, 9980, 998005 (2016).

    Article  Google Scholar 

  10. E. O. Kiktenko et al., “Demonstration of a quantum key distribution network in urban fibre-optic communication lines,” Kvant. Elektr., 47, No. 9, 798–802 (2017).

    Article  Google Scholar 

  11. A. Lytova, “Central limit theorem for linear eigenvalue statistics for a tensor product version of sample covariance matrices,” J. Theor. Probab., 31, No. 2, 1024–1057 (2018).

    Article  MathSciNet  Google Scholar 

  12. V. A. Marchenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Mat. Sb., 72 (114), No. 4, 507–536 (1967).

  13. A. Montanaro, “On the distinguishability of random quantum states,” Commun. Math. Phys., 273, No. 3, 619–636 (2007).

    Article  MathSciNet  Google Scholar 

  14. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press (2000).

    MATH  Google Scholar 

  15. M. Peev et al., “The SECOQC quantum key distribution network in Vienna,” New J. Phys., 11, 075001 (2009).

    Article  Google Scholar 

  16. A. B. Price, J. G. Rarity, and C. Erven, Quantum key distribution without sifting, e-print arxiv.org/abs/1707.03331

  17. D. Qiu and L. Li, “Minimum-error discrimination of quantum states: New bounds and comparison,” Phys. Rev. A, 81, No. 4, 042329 (2010).

    Article  Google Scholar 

  18. M. Sasaki et al. “Field test of quantum key distribution in the Tokyo QKD Network,” Optics Express, 19, No. 11, 10387–10409 (2011).

    Article  Google Scholar 

  19. B. Schneier, Applied Cryptography, John Wiley & Sons (1994).

    Google Scholar 

  20. C. Shannon, “Communication theory of secrecy systems,” Bell Syst. Techn. J., 28, No. 4, 656–715 (1949).

    Article  MathSciNet  Google Scholar 

  21. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” Found. Comput. Sci. Conf. Publ. (1994), pp. 124–134.

  22. D. Stucki et al., “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys., 13, 123001 (2011).

    Article  Google Scholar 

  23. A. S. Trushechkin, P. A. Tregubov, E. O. Kiktenko, Y. V. Kurochkin, and A. K. Fedorov, Quantum key distribution protocol with pseudorandom bases, e-print arxiv.org/abs/1706.00611

  24. H. Yuen, A New Approach to Quantum Cryptography, I. General Principles and Key Generation, e-print arxiv.org/abs/quant-ph/0311061.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Tregubov.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 151, Quantum Probability, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tregubov, P.A., Trushechkin, A.S. Quantum Stream Ciphers: Impossibility of Unconditionally Strong Algorithms. J Math Sci 252, 90–103 (2021). https://doi.org/10.1007/s10958-020-05144-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05144-x

Keywords and phrases

AMS Subject Classification