Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Computer Vision – ECCV 2012
  3. Conference paper

Polynomial Regression on Riemannian Manifolds

  • Conference paper
  • pp 1–14
  • Cite this conference paper
Computer Vision – ECCV 2012 (ECCV 2012)
Polynomial Regression on Riemannian Manifolds
  • Jacob Hinkle21,
  • Prasanna Muralidharan21,
  • P. Thomas Fletcher21 &
  • …
  • Sarang Joshi21 

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7574))

Included in the following conference series:

  • European Conference on Computer Vision
  • 9987 Accesses

  • 57 Citations

  • 3 Altmetric

Abstract

In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds. The theory enables parametric analysis in a wide range of applications, including rigid and non-rigid kinematics as well as shape change of organs due to growth and aging. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein and the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer’s study.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Nonlinear Regression on Manifolds for Shape Analysis using Intrinsic Bézier Splines

Chapter © 2020

The parabolic Anderson model on Riemann surfaces

Article Open access 23 July 2018

Polynomial Model CR-Manifolds with the Rigidity Condition

Article 01 January 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Differential Geometry
  • Global Analysis and Analysis on Manifolds
  • Linear Models and Regression
  • Shape Analysis
  • Diffusion Processes and Stochastic Analysis on Manifolds
  • Partial Differential Equations on Manifolds

References

  1. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley (1998)

    Google Scholar 

  2. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.C.: Population shape regression from random design data. Int. J. Comp. Vis. 90, 255–266 (2010)

    Article  Google Scholar 

  3. Jupp, P.E., Kent, J.T.: Fitting smooth paths to spherical data. Appl. Statist. 36, 34–46 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fletcher, P.T.: Geodesic regression on Riemannian manifolds. In: International Workshop on Mathematical Foundations of Computational Anatomy, MFCA (2011)

    Google Scholar 

  5. Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic Regression for Image Time-Series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer (1989)

    Google Scholar 

  7. Cootes, T.F., Twining, C.J., Taylor, C.J.: Diffeomorphic statistical shape models. In: BMVC (2004)

    Google Scholar 

  8. Vaillant, M., Glaunés, J.: Surface matching via currents. In: IPMI (2005)

    Google Scholar 

  9. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision 24, 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  10. Turaga, P., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition 33, 2273–2286 (2011)

    Google Scholar 

  11. Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge Univ. Press (1991)

    Google Scholar 

  12. Kent, J.T., Mardia, K.V., Morris, R.J., Aykroyd, R.G.: Functional models of growth for landmark data. In: Proceedings in Functional and Spatial Data Analysis, pp. 109–115 (2001)

    Google Scholar 

  13. do Carmo, M.P.: Riemannian Geometry, 1st edn. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  14. Leite, F.S., Krakowski, K.A.: Covariant differentiation under rolling maps. Centro de Matemática da Universidade de Coimbra (2008) (preprint)

    Google Scholar 

  15. Fletcher, P.T., Liu, C., Pizer, S.M., Joshi, S.C.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imag. 23, 995–1005 (2004)

    Article  Google Scholar 

  16. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. in Math. 137, 1–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kendall, D.G.: A survey of the statistical theory of shape. Statistical Science 4, 87–99 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le, H., Kendall, D.G.: The Riemannian structure of Euclidean shape spaces: A novel environment for statistics. Ann. Statist. 21, 1225–1271 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. O’Neill, B.: The fundamental equations of a submersion. Michigan Math J. 13, 459–469 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: IPMI (2007)

    Google Scholar 

  21. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: ICCV (2007)

    Google Scholar 

  22. Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved surfaces. IMA J. Math. Control Inform. 6, 465–473 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giambò, R., Giannoni, F., Piccione, P.: An analytical theory for Riemannian cubic polynomials. IMA J. Math. Control Inform. 19, 445–460 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Machado, L., Leite, F.S.: Fitting smooth paths on Riemannian manifolds. Int. J. App. Math. Stat. 4, 25–53 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Samir, C., Absil, P.A., Srivastava, A., Klassen, E.: A gradient-descent method for curve fitting on Riemannian manifolds. Found. Comp. Math. 12, 49–73 (2010)

    Article  MathSciNet  Google Scholar 

  26. Su, J., Dryden, I.L., Klassen, E., Le, H., Srivastava, A.: Fitting smoothing splines to time-indexed, noisy points on nonlinear manifolds. Image and Vision Computing 30, 428–442 (2012)

    Article  Google Scholar 

  27. Moussa, M.A.A., Cheema, M.Y.: Non-parametric regression in curve fitting. The Statistician 41, 209–225 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. SCI Institute, University of Utah, 72 Central Campus Drive, Salt Lake City, UT, 84112, USA

    Jacob Hinkle, Prasanna Muralidharan, P. Thomas Fletcher & Sarang Joshi

Authors
  1. Jacob Hinkle
    View author publications

    Search author on:PubMed Google Scholar

  2. Prasanna Muralidharan
    View author publications

    Search author on:PubMed Google Scholar

  3. P. Thomas Fletcher
    View author publications

    Search author on:PubMed Google Scholar

  4. Sarang Joshi
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Microsoft Research Ltd., CB3 0FB, Cambridge, UK

    Andrew Fitzgibbon

  2. Dept. of Computer Science, University of North Carolina, 27599, Chapel Hill, NC, USA

    Svetlana Lazebnik

  3. California Institute of Technology, 91125, Pasadena, CA, USA

    Pietro Perona

  4. Institute of Industrial Science, The University of Tokyo, 153-8505, Tokyo, Japan

    Yoichi Sato

  5. INRIA, 38330, Montbonnot, France

    Cordelia Schmid

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinkle, J., Muralidharan, P., Fletcher, P.T., Joshi, S. (2012). Polynomial Regression on Riemannian Manifolds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33712-3_1

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-33712-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33711-6

  • Online ISBN: 978-3-642-33712-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Riemannian Manifold
  • Corpus Callosum
  • Polynomial Regression
  • Parallel Transport
  • Adjoint Equation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

173.236.255.191

Not affiliated

Springer Nature

© 2025 Springer Nature