Skip to main content

Spatial-Taxon Information Granules as Used in Iterative Fuzzy-Decision-Making for Image Segmentation

  • Chapter
Granular Computing and Decision-Making

Part of the book series: Studies in Big Data ((SBD,volume 10))

Abstract

An image conveys multiple meanings depending on the viewing context and the level of granularity at which the viewer perceptually organizes the scene. In image processing, an image can be similarly organized by means of a standardized natural-scene-taxonomy, borrowed from the study of human visual taxometrics. Such a method yields a three-dimensional representation comprised of a hierarchy of nested spatial-taxons. Spatial-taxons are information granules composed of pixel regions that are stationed at abstraction levels within hierarchically-nested scene-architecture. They are similar to the Gestalt psychological designation of figure-ground, but are extended to include foreground, object groups, objects and salient object parts. By using user interaction to determine scene scale and taxonomy structure, image segmentation can be operationalized into a series of iterative two-class fuzzy inferences. Spatial-taxons are segmented from a natural image via a three step process. This chapter provides a gentle introduction to analogous human language and vision information-granules; and decision systems, modeled on fuzzy natural vision-based reasoning, that exploit techniques for measuring human consensus about spatial-taxon structure. A system based on natural vision-based reasoning is highly non-linear and dynamical. It arrives at an end-point spatial-taxon by adjusting to human input as it iterates. Human input determines the granularity of the query and consensus regarding spatial-taxon regions. The methods of concept algebra developed for computing with words [42] [48] are applied to spatial-taxons. Tools from the study of chaotic systems, such as tools for avoiding iteration problems, are explained in the context of fuzzy inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bargiela, A., Pedrycz, W.: Granular computing: an introduction. Springer (2003)

    Google Scholar 

  2. Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-centered information processing. IEEE Transactions on Fuzzy Systems 16(2), 320–330 (2008)

    Article  Google Scholar 

  3. Bargiela, A., Pedrycz, W.: Granular computing: an introduction. Springer (2003)

    Google Scholar 

  4. Barghout, L.: Visual Taxometric Approach to Image Segmentation Using Fuzzy-Spatial Taxon Cut Yields Contextually Relevant Regions. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part II. CCIS, vol. 443, pp. 163–173. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. Barghout, L.: Vision: Global Perceptual Context Changes Local Contrast Processing Updated to include computer vision techniques. Scholars Press (2014) ISBN-10: 3639709624, ISBN-13: 978-3639709629

    Google Scholar 

  6. Barghout, L.: Empirical Data on the Configural Architecture of Human Scene Perception using Natural Images. J. Vis. 9(8), 964 (2009), doi:10.1167/9.8.964

    Article  Google Scholar 

  7. Barghout, L.: System and Method for Edge Detection in Image Processing and Recognition. WIPO WO/2007/044828 (2006), https://www.google.com/patents/WO2007044828A3

  8. Barghout, L.: Linguistic Image Label Incorporating Decision Relevant Perceptual, Semantic, and Relationships Data, USPTO,20080015843 (2007), https://www.google.com/patents/US20080015843

  9. Barghout, L., Lee, L.: Perceptual information processing system, USPTO patent application number: 20040059754 (2003), http://www.google.com/patents/US20040059754

  10. Barghout, L., Sheynin, J.: Real-world scene perception and perceptual organization: Lessons from Computer Vision. Journal of Vision 13(9) (July 24, 2013)

    Google Scholar 

  11. Barghout, Winter, Riegal: Empirical Data on the Configural Architecture of Human Scene Perception and Linguistic Labels using Natural Images and Ambiguous figures. In: VSS 2011 (2011)

    Google Scholar 

  12. Barghout Stein, L., Tyler, C.W., Klein, S.A.: Partioning mechanisms of masking: contrast transducer versus multiplicative noise. In: Rogowitz, B.E., Pappas, T.N. (eds.) Proceedings of SPIE. Human Vision and Electronic Imaging II, vol. 3016 (1997)

    Google Scholar 

  13. Berlin, B., Kay, P.: Basic color terms: their universality and evolution. The University of California Press, Berkeley (1969)

    Google Scholar 

  14. Bloom, P.: How Children Lean the Meanings of Works, p. 82. MIT Press (2000)

    Google Scholar 

  15. Cancho, Sole: Zipf’s law and random texts. Advances in Complex Systems 5(1), 1–6 (2002)

    Google Scholar 

  16. Chang, C.L.: Fuzzy-logic based programming. World Scientific, Singapore (1985)

    Google Scholar 

  17. Chen, S.-J., Chen, S.-M.: Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. Applied Intelligence 26(1), 1–11 (2007)

    Article  Google Scholar 

  18. Chen, S.-M., Wang, J.-Y.: Document retrieval using knowledge-based fuzzy information retrieval techniques. IEEE Transactions on Systems, Man and Cybernetics 25(5), 793–803 (1995)

    Article  Google Scholar 

  19. Chen, S.-M.: Weighted fuzzy reasoning using weighted fuzzy Petri nets. IEEE Transactions on Knowledge and Data Engineering 14(2), 386–397 (2002)

    Article  Google Scholar 

  20. Deng, Y., Manjunath, B., Shin, H.: Color image segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2 (1999)

    Google Scholar 

  21. Granzier, J.: Color Constancy Explained. Thesis Vrige Universiteit Amsterdam, ISBN 97 890 86591442

    Google Scholar 

  22. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From Single Image to List of Objects Based on Edge and Blob Detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 605–615. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. James, W.: Principles of psychology, p. 403. Holt, New York (1890)

    Book  Google Scholar 

  24. Jolicoeur, Gluck, Kosslyn: Pictures and names: making the connection. Cognitive Psychology 16, 243–275 (1984)

    Google Scholar 

  25. Klein, S.A.: Will robots see? In: Spatial Vision in Humans and Robots: The Proceedings of the 1991 York Conference on Spatial Vision in Humans and Robots. Cambridge University Press (1993)

    Google Scholar 

  26. Nelson, K.: Constraints on Word Meaning? Cognitive Development 3, 221–246 (1988)

    Article  Google Scholar 

  27. Nelson, R., Palmer, S.E.: Of holes and wholes: The perception of surrounded regions. Perception-London 30(10), 1213–1226 (2001)

    Article  Google Scholar 

  28. Pedrycs, W., Bargiela, A.: Granular Clustering: A Granular Signature of Data. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 32(2) (2002)

    Google Scholar 

  29. Ladybug on yellow daisy. Photosbyflick, http://www.flickr.com/photos/17773534N03/3611852338/

  30. Prasad, S., Kumar, P., Sinha, K.P.: Grayscale to Color Map Transformation for Efficient Image Analysis on Low Processing Devices. In: El-Alfy, E.-S., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T. (eds.) Advances in Intelligent Informatics. AISC, vol. 320, pp. 9–18. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  31. Peitgen, H.-O., Saupe, D., Jurgens, H.: Chaos and Fractals: New Frontiers of Science. Springer (2004) ISBN-10: 0387202293

    Google Scholar 

  32. Ruscio, J., Haslam, N., Ruscio, A.: Introduction To Taxometric Method Lawrence Eelbaum Associates (2006)

    Google Scholar 

  33. Russell, S.: Unifying Logic and Probability: A New Dawn for AI? In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part I. CCIS, vol. 442, pp. 10–14. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  34. Russell, S., Peter, N.: Artificial Intelligenc, A modern approach, 3rd edn. Pearson Education, Prentice Hall (2010)

    Google Scholar 

  35. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE TPAMI 22(8) (2000)

    Google Scholar 

  36. Simon, H.: The Architecture of Complexity. Proceedings of the American Philosophical Society 106(6), 467–482 (1962)

    Google Scholar 

  37. Shannon, C.E.: A Mathematical Theory of Communication. The Bell System Technical Journal 27, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  38. Treisman, A.M.: Strategies and models of selective attention. Psychological Review 76(3), 282–299 (1969)

    Article  Google Scholar 

  39. Tyler, C.W., Chen, C.-C.: Signal detection theory in the 2AFC paradigm: attention, channel uncertainty and probability summation. Vision Research 40(22), 3121–3144 (2000)

    Article  Google Scholar 

  40. Vapnik, V.: Invited Speaker. IPMU Information Processing and Management of Uncertainty in Knowledge-Based Systems (2014)

    Google Scholar 

  41. Wang, L.-X.: Generating Fuzzy Rules by Learning from Examples. IEEE Transactions on Systems, Man and Cybernetics 22(6) (1992)

    Google Scholar 

  42. Wang: On Concept Algebra for Computing with Words (CWW). International Journal of Semantic Computing 4(3) (2010)

    Google Scholar 

  43. Wertheimer: Laws of Organization in Perceptual Forms (partial translation) Ellis, W.B. (ed.) A Sourcebook of Gestalt Psychology, pp. 71–88. Harcourt Brace (1938)

    Google Scholar 

  44. Zadeh, L.A.: Fuzzy sets. Inform. and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23, 421–427 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zadeh, L.A.: Similarity Relations and Fuzzy Orderings. Information Sciences 3, 177–200 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man & Cybern. SMC-3 (1973)

    Google Scholar 

  48. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland Publishing Co., Amsterdam (1979)

    Google Scholar 

  49. Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, J., Michie, D., Mikulich, L.I. (eds.) Machine Intelligence, vol. 9, pp. 149–194. Halstead Press, New York (1979)

    Google Scholar 

  50. Zadeh, L.A.: Possibility Theory and Soft Analysis. In: Proc. of AAAS Symposium on Soft Data Analysis (1980)

    Google Scholar 

  51. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zadeh, L.: Generalized theory of uncertainty (GTU) - principal concepts and ideas. Computatiional Statistics & Data Anaylysis 51, 15–16 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  53. Zadeh, L.: Toward a Restriction-centered Theory of Truth and Meaning (RCT). Information Sciences 248 (2013)

    Google Scholar 

  54. Berkeley Segmentation Database, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barghout, L. (2015). Spatial-Taxon Information Granules as Used in Iterative Fuzzy-Decision-Making for Image Segmentation. In: Pedrycz, W., Chen, SM. (eds) Granular Computing and Decision-Making. Studies in Big Data, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-16829-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16829-6_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16828-9

  • Online ISBN: 978-3-319-16829-6

  • eBook Packages: EngineeringEngineering (R0)

Keywords

Publish with us

Policies and ethics