2
\$\begingroup\$

Write a program or function to output an N x N sunburst image made of red, orange and yellow emoji icons.

For N=40, it should look roughly like this:

🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧
🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧
🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧
🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥
🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥
🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥
🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟥🟥🟥🟧🟥🟥🟥🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧
🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟥🟥🟧🟥🟥🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟥🟥🟧🟥🟥🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟧🟥🟥🟧🟥🟥🟧🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧
🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟧🟧🟥🟧🟥🟧🟧🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧
🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟧🟧🟥🟥🟧🟥🟧🟥🟧🟥🟥🟧🟧🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟧🟥🟨🟨🟨🟨🟨🟥🟧🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟨🟨🟨🟨🟨🟨🟨🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟨🟨🟨🟨🟨🟨🟨🟨🟨🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟨🟨🟨🟨🟨🟨🟨🟨🟨🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟨🟨🟨🟨🟨🟨🟨🟨🟨🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟨🟨🟨🟨🟨🟨🟨🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟧🟥🟨🟨🟨🟨🟨🟥🟧🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟧🟧🟥🟥🟧🟥🟧🟥🟧🟥🟥🟧🟧🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥
🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟧🟧🟥🟧🟥🟧🟧🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟧🟥🟥🟧🟥🟥🟧🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟥🟥🟧🟥🟥🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟥🟥🟧🟥🟥🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧
🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟥🟥🟥🟧🟥🟥🟥🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧
🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥
🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥
🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥
🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧

The key attributes:

  • There are 16 red (🟥)and 16 orange (🟧) sun rays, each representing a wedge of 32/360 degrees, starting from a central point and expanding outwards.
  • They are oriented such that there is an orange ray centered on the X and Y axes and on the diagonals.
  • The sun (🟨) is a circle of diameter N/4 (+/-1) centered in the middle.
  • The output is approximately symmetrical about the X and Y axes. ("Approximately" allowing for single-character imprecisions, tending towards more symmetrical for larger N).

Input

N, an integer >= 12.

Output

Multi-line text in some format.

It is not essential that your output precisely matches these reference outputs, as long as the key attributes are met.

Scoring

Code golf

Sample data

N=80

🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥
🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥
🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥
🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧
🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟥🟥🟥🟧🟥🟥🟥🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟨🟨🟨🟨🟨🟨🟨🟨🟨🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟥🟥🟥🟧🟥🟥🟥🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥
🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟧🟧🟧🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧
🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧
🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥
🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥
🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥
🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥
🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧
🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧🟧🟧🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟥🟧🟧🟧🟧🟧🟧🟧

N=12

🟧🟧🟥🟧🟧🟥🟧🟥🟧🟧🟥🟧
🟧🟧🟥🟥🟧🟥🟧🟥🟧🟥🟥🟧
🟥🟥🟧🟥🟧🟥🟧🟥🟧🟥🟧🟥
🟧🟥🟥🟧🟥🟧🟧🟧🟥🟧🟥🟥
🟧🟧🟧🟥🟧🟧🟧🟧🟧🟥🟧🟧
🟥🟥🟥🟧🟧🟨🟨🟨🟧🟧🟥🟥
🟧🟧🟧🟧🟧🟨🟨🟨🟧🟧🟧🟧
🟥🟥🟥🟧🟧🟨🟨🟨🟧🟧🟥🟥
🟧🟧🟧🟥🟧🟧🟧🟧🟧🟥🟧🟧
🟧🟥🟥🟧🟥🟧🟧🟧🟥🟧🟥🟥
🟥🟥🟧🟥🟧🟥🟧🟥🟧🟥🟧🟥
🟧🟧🟥🟥🟧🟥🟧🟥🟧🟥🟥🟧
\$\endgroup\$
9
  • 7
    \$\begingroup\$ I have voted to close for needing more details. I think the flexibility of the output, while it may be helpful for letting many different solutions come out, makes it very difficult for voters to evaluate whether a given solution is valid. Some time in the sandbox might have helped with this. \$\endgroup\$ Commented Sep 11 at 11:23
  • \$\begingroup\$ @Giuseppe I am not seeing the issue. It is not essential that your output precisely matches these reference outputs, as long as the key attributes are met. Admission that some variation is allowed due to rounding errors etc. How much? allowing for single-character imprecisions I think that is perfectly clear. The only thing that can be improved is the emphasis. \$\endgroup\$ Commented Sep 11 at 21:25
  • \$\begingroup\$ On my phone, the icons all render as grey squares so the pattern isn't visible. \$\endgroup\$ Commented Sep 11 at 22:43
  • \$\begingroup\$ @xnor yeah, emojis are not universal. \$\endgroup\$ Commented Sep 11 at 22:57
  • \$\begingroup\$ @LevelRiverSt the emphasis? Can you elaborate? \$\endgroup\$ Commented Sep 11 at 22:58

4 Answers 4

4
\$\begingroup\$

JavaScript (ES6), 124 bytes

f=(w,y=x=w)=>y?[...`🟧🟨🟥
`][x--?(X=x-~-w/2)*X+(Y=y+~w/2)*Y<w*w/64?1:Math.atan(X/Y)*10.19+33&2:(y--,x=w,3)]+f(w,y):""

Try it online!

Method

For each coordinates \$(x,y) \in [0\dots w-1]^2\$, we compute:

$$X=x-\frac{w}{2}+\frac{1}{2}$$ $$Y=y-\frac{w}{2}+\frac{1}{2}$$

and then convert \$(X,Y)\$ to polar coordinates \$(r,\phi)\$:

$$r=\sqrt{X^2+Y^2}$$ $$\phi=\arctan(X/Y)$$

The test for the sun is:

$$r<\frac{w}{8} \iff X^2+Y^2<\frac{w^2}{64}$$

The color of each ray is obtained by testing the parity of:

$$\left\lfloor \phi\times \frac{16}{\pi}+\frac{1}{2}\right\rfloor\approx\lfloor\phi\times 5.09+0.5\rfloor$$

In the JS implementation, we actually multiply by \$32/\pi\approx 10.19\$, add \$33\$(*) and test the 2nd least significant bit.

(*) Because the sign of % in JS is the sign of the dividend and because we use a bitwise AND for our test, we need to add a large enough constant to force a positive result.

\$\endgroup\$
3
\$\begingroup\$

Charcoal, 61 52 bytes

NθEθ⭆Eθ⁻⁺ι×λI1j×⊘⊖θI1+1j⎇‹×⁸↔λθ🟨§🟧🟥№IXλ¹⁶(-

Attempt This Online! Link is to verbose version of code. Explanation:

NθEθ⭆Eθ⁻⁺ι×λI1j×⊘⊖θI1+1j

Input N and calculate the complex numbers for an N×N grid with the origin at its centre.

⎇‹×⁸↔λθ🟨§🟧🟥№IXλ¹⁶(-

Calculate the appropriate emoji for each element.

\$\endgroup\$
2
  • \$\begingroup\$ "there is an orange ray centred on the X and Y axes." You seem to have red and orange the wrong way round, but that is an easy fix. \$\endgroup\$ Commented Sep 11 at 21:19
  • \$\begingroup\$ @LevelRiverSt Fortunately my code was buggy anyway and my previous fix didn't help but this new version is shorter and also gets the colours correct first time which is nice. \$\endgroup\$ Commented Sep 11 at 22:08
2
\$\begingroup\$

Ruby, 106 bytes

->n{(1..n*m=n+1).map{|i|z=i%m-m/2+(i/m-n/2)*1i
i%m<1?$/:z.abs>n/8?'🟥🟧'[(z.arg*5.1-0.5)%2]:?🟨}*""}

Try it online!

A function accepting an integer and returning a newline separated string

Commented code

->n{(1..n*m=n+1).map{|i|    #Output n rows of m=n+1 characters by iterating through i from 1 to n*m
z=i%m-m/2+(i/m-n/2)*1i      #Convert the x and y coordinates into a complex number z, with origin at the centre.
i%m<1?$/:                   #For the last character in each row output newline.
 z.abs>n/8?                  #If absolute value of z > n/8
  '🟥🟧'[(z.arg*5.1-0.5)%2]: #Output red or orange depending on angle
  ?🟨                        #Else output yellow for centre (the ? marks a character literal)
  }*""                     #Close iteration bracket. Convert array into string by concatenating
}                          #Return string
\$\endgroup\$
1
  • \$\begingroup\$ Porting my Charcoal emoji selection formula saves 3 bytes: Try it online! \$\endgroup\$ Commented yesterday
2
\$\begingroup\$

Python 3 - 192 bytes

def f(N):
 import math as m;c=lambda x,y:"🟨"if x*x+y*y<N*N/64 else"🟥"if abs(round(m.atan2(y,x)/m.pi*16))%2 else"🟧"
 for y in range(N):print(''.join([c(x-N/2,y-N/2)for x in range(N)]))

Try it online!

Explanation

Prints a simple 2-D grid, with a function defining the color of the cell: $$ color(x, y) = \text{Yellow, if } x^2 + y^2 < \left(\frac{N}{8}\right)^2$$ Then the angle is obtained with math.atan2, and the circle is divided in 32 sections: $$N = \left[\alpha \cdot \frac {2\pi} {32} \right]$$ N being the number of the corresponding section. When N is even, the returned color is orange, when N is odd, it returns red.

New contributor
A. Helmer is a new contributor to this site. Take care in asking for clarification, commenting, and answering. Check out our Code of Conduct.
\$\endgroup\$
3
  • \$\begingroup\$ Nice, almost clean code - at least in golfing standards. You can put a from math import * after the function definition. Also, just R=range(N) on its own line saves some bytes. The join lets you drop the [...] brackets without loss. \$\endgroup\$ Commented 2 days ago
  • \$\begingroup\$ You can also drop the spaces in 64 else and 2 else. \$\endgroup\$ Commented 2 days ago
  • \$\begingroup\$ I managed to avoid importing math altogether by porting my Charcoal answer: Try it online! \$\endgroup\$ Commented yesterday

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.